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The stability of a baroclinic zonal current to symmetric perturbations on a 
meridionally unbounded f-pla.ne is considered. The lower boundary is at  rest but 
the upper one moves with a constant velocity in keeping with the velocity of the 
zonal current. Following Stone (1966) a horizontal length scale O(Ro) is taken, 
where Ro is the Rossby number, with the Richardson number Ri = O(1). Insta- 
bility sets in when the wavelength is O(E)),  where E is the Ekman number based 
on the distance between the rigid horizontal boundaries, which corresponds to 
Stone’s inviscid value zero, and to McIntyre’s (1970) value infinity on a length 
scale O(E4). 

A nonlinear analysis about the point of onset of instability yields the result 
that for the monotonic mode zonal momentum is convected polewards. The 
possible implications of this result for the dynamics of Jupiter’s atmosphere are 
discussed. 

1. Introduction 
The baroclinic stability of a zonal flow with vertical shear has attracted much 

attention since Eady’s (1949) classical f-plane analysis. He assumed a strongly 
stratified atmosphere, i.e. one in which the Richardson number Ri $ 1, and was 
able to relate the growing instabilities to the development of cyclones in the 
earth’s atmosphere. Stone (1966) extended Eady’s model to include moderate 
values of Ri and found that symmetric instabilities (those independent of 
longitude) are possible if Ri < 1 and, at least in a linear model, have the greatest 
growth rates when 0-25 < Ri < 0.95 (see also Eliassen & Kleinschmidt 1957; 
Charney 1973 and references). In  subsequent papers Stone (1967, 1972) and 
Gierasch & Stone (1968) have developed the attractive hypothesis that sym- 
metric instabilities of a zonal shear flow may account for some features of 
Jupiter’s atmosphere, chiefly its symmetric cloud bands and its equatorial jet 
(see Peek 1958). In  order to maintain the jet angular momentum must be con- 
vected equatorwards and one of Stone’s interesting results is that the symmetric 
instabilities provide a mechanism for this provided that 4 < Ri < +. On the other 
hand, Hide (1970) argues from physical considerations that they cannot do so 
whatever the value of Ri. 

There are two features of Stone’s analysis which merit further study and which 
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we shall discuss in this paper. The first is the fact that for an inviscid fluid the 
critical wavelength for the onset of instability is zero. This strongly suggests that 
a new length scale is required in this neighbourhood, and by introducing the 
viscosity v and conductivity K (here assumed equivalent for scaling purposes) we 
may obtain any length scale we wish by combining appropriate powers of 
(v / f  )a and H ,  where $ f is the angular velocity of the system and H is the depth of 
the atmosphere. McIntyre (1970), in a related problem, set the boundaries a t  
infinity and used the only possible length scale, (v/f  )&. He found that when the 
basic flow has no horizontal shear instability first sets in at Ri = Ri, = ( 1  + ~ ) ~ / 4 a  
( > 1 when v 9 l), where r = V / K  is the Prandtl number, when the wavelength is 
infinite. The destabilization of certain classically stable modes by the introduc- 
tion of viscosity and thermal conductivity is an interesting feature of the solution 
[similar results have been obtained by Yih (1959,1961) for viscosity and electrical 
conductivity; see also Acheson & Hide (1973)], but from our point of view the 
most significant feature is that yet another length scale is required if we are to 
discuss the onset of instability. 

In  $ 2  of this paper we show that the appropriate length scale for marginal 
instability is O((v /HY)*)  and that instability sets in, at a finite wavelength, 
when the Richardson number is that given by McIntyre (loc. cit .)  less a term 

The second feature is that a linear stability analysis was applied by Stone to 
the basic zonal flow when A = Ri, - Ri is no longer small. For these values of Ri 
the flow may be thought of as being set up instantaneously, but this leads to a 
complicated mathematical problem in which a continuous spectrum of modes are 
simultaneously unstable. The basic zonal flow is destroyed within a few rotations 
of the planet. A more informative approach is to suppose that instability is set 
up as Ri decreases from a supercritical (stable) value through the critical value. 
The flow after the onset of instability is likely to be nonlinear and the linear 
theory is likely to be inadequate. The first question to be considered by such a 
theory is whether the flow evolves from the unstable form of a uniform zonal 
shear to a new stable form or becomes catastrophically unstable and turbulent. 

This question is answered in $ 3  for A < 1 (but not infinitesimal) by using a 
nonlinear analysis similar to that of Stuart (1958, 1960) about the point of onset 
of monotonic instability (this mode has a higher critical Richardson number than 
the oscillatory instabilities which are also possible). The result is that the ampli- 
tude of the disturbance tends to a constant finite value. We interpret this result 
as implying an exchange of stabilities at A = 0 and that for A > 0 there exists 
a stable solution of the problem in which the meridional velocity v is non-zero 
and such that v+ 0 as A +  0. The form of this solution has been found for A < 1 
and further study is needed to obtain its form at more moderate values of A. AS 
A increases this stable solution evolves and it is possible that at some stage 
A = A,, say, stability is lost and a further bifurcation to a more complicated form 
or even a catastrophic instability in which there is no stable solution for A > Al 
occurs. The theory of Taylor-vortex flow (Stuart 1971) seems to imply that such 
a history is possible. This theory also provides some evidence that the flow is 
stable to nonlinear as well as linear disturbances when Ri is just supercritical. 

O(( V l H W ) .  
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Finally, in $4, the momentum flux is shown to be polewards for all values of the 
Prandtl number and for Richardson numbers not far removed from the critical 
value in agreement with Hide's and Stone's results. 

2. The linear stability problem 
Stone's (1  972) model assumes a Boussinesq adiabatic fluid contained between 

two horizontal planes at x* = 0, H but unbounded horizontally. Rectangular 
Cartesian co-ordinates (x*, ye, z * )  are taken in the zonal, meridional and vertical 
directions and the motion takes place on an f-plane rotating about a vertical axis 
with angular velocity if. Let the fluid have density p*, pressure p*, velocity 
(u*, v*, w*) in the (x*, y*, z*)  co-ordinates, temperature 6*, kinematic viscosity v 
and thermometric conductivity K .  Then the conservation equations are 

ap*/ax* = ap*gB*, d6*/dt* = K V % 8 * ,  (2.41, (2.5) 

where g is the acceleration due to gravity, t* measures time and we have already 
anticipated that a/az* $ a/az*, a/ay* and w* < u*, v*. These equations differ 
from Stone's only in the inclusion of the diffusive terms. The boundary conditions 

The basic flow is assumed to consist of a zonal wind of magnitude U with constant 
vertical shear and a temperature field with constant vertical stratification 
a6:/&* related to U by the thermal-wind equation. We non-dimensionalize with 
reference to this state by writing 

( X * , Y * , ~ * )  = ( ( u / f ) x , ( u / f ) y , H z ) ,  (u*,v*,zc~*) = (Uu ,  Uv, fHw),  

6" = H(a@,*/a~*)6, t* = f-'t, p* = ap*gH2(a6$/az*)p. 

Then (2.1)-(2.5) become 
au av aw z+ay+x = 0, 

(2.10), (2.11) 

where Ri = (Richardson number), 
U2 
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E = v/HY = uf/e2U2 

v = V/K (Prandtl number), 

Ro = Uluf (Rossby number), 

(Ekman number), 

E = Hf/U = H/uRo (aspect ratio). 

Here a is some horizontal reference length scale. In  deriving these equations we 
have assumed that the ratio of vertical to horizontal length scales is small com- 
pared with the Richardson number, i.e., € < Ri. We shall further assume that 
Ri = O(1) and E < 1. 

Then the basic zonal flow may be taken to be 

8, = wo = 0, uo = z, e, = Z - y / ~ i ,  Po = p- y z l ~ i .  (2.12) 

In  order to avoid the complication of an Ekman layer a t  the upper boundary we 
shall suppose that i t  moves with a dimensionIess veIocity of unity; (2.12) then 
satisfies the viscous boundary conditions. 

When deviations from this steady state have amplitude A with A < 1 we may 
expand the total solution in powerg of A: 

u = u,+Au1+A2u2+ ..., etc. (2.13) 

The fist-order equations are obtained by substituting (2.13) into (2.7)-(2.11) 
and equating coefficients of A. We are interested here in the symmetric insta- 
bilities of the zonal flow, which means that the perturbed flow is taken to be 
independent of x and the linearized problem to have normal-mode solutions of 
the form 

u1 = u l ( z )  exp(i1y + wt} etc., 

where ilv, + dw,Jdz = 0, (2.14) 

wul + W ,  = V ,  + E d2Ul/dz2, (2.15) 

(2.16) 

(2.17) 

00, - V J R i  + W ,  = (E/V) d26'l/dz2. (2.18) 

These equations may be reduced to 

d2W, d2W1 dw 
dz dz2 dz 

0 , 0 2 7  +Dg- +il(D,+D)-1-12RiD~l = 0, (2.19) 

where D = w-Ed21dz2 and D, = w -  E/crd2/dz2. Equation (2.19), together with 
the boundary conditions 

w1 = u1 = v, = 8, = 0 at z = 0,1,  (2.20) 

defines the eigenvalue problem for the complex frequency-w. The basic flow is 
then unstable to axisymmetric disturbances if Re w > 0, and we are particularly 
interested here in determining the neutral-stability curve Re w = 0. 

The inviscid problem defined by setting E = 0 in (2.19) is 

w [ (  1 + w2) d2wl/dz2 + 2i1 dwl/dz - 12Riwl] = 0, w1 = 0 at z = 0, 1, 
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and apart from the trivial solution w = 0 corresponds to Stone’s (1972) equation 
(2.25). It is then easily shown that 

i.e. that w2 = 0 when 1 = mn/( 1 - Ri)*. Hence the flow is stable for Ri > 1 and 
instability first occurs at Ri = 1 as 1 -+ CO. The most unstable mode (with maxi- 
mum Re w )  also occurs as 1 -+ 00 and this suggests that a closer examination of 
these higher wavenumbers is required. No new scaling is possible in the inviscid 
model but by turning our attention to the viscous equations and supposing that 
E is small we may look for solutions of the form 

w1 = exp {wt + iE-*(ly + Ax)}.  
Then (2.19) becomes 

A2(w + A2/a) (W + A2)2  + A2(w + A2/(+) + Al[2w + (1 + G-’) A2] + P(w + A 2 )  Ri = 0, 

and this corresponds to McIntyre’s (1970) equation (2.9), differing only in that 
we have taken e < 1, so that his k is equivalent to our A. Certain properties of 
this equation have been obtained and discussed by McIntyre (Zoc. cit .)  and we 
shall briefly summarize some of them here. There is a real root of (2.22) which, in 
the inviscid limit A, l-+ 0, corresponds to the trivial solution w = 0. This mono- 
tonic instability first sets in as A, 1 -+ 0, when 

Ri = - a-l(A/l) [A/l+ ( 1  + a)], 
and Ri is a maximum when All = -$(1 +a), the maximum value being 
R,, = (1 + C T ) ~ / ~ G .  McIntyre notes that R,, > 1 when a + 1, which means that 
although the flow is classically stable it is unstable in the presence of diffusive 
mechanisms of different magnitudes. The other two roots of (2.22) are complex 
conjugates and correspond to oscillatory instabilities which are the viscous 
counterparts of that given in (2.21). Again instability first sets in as A, 1 + 0, when 

(2.22) 

- 2 ~ h  A 1 + 3 a  Ri=---- 
l+a l  ( J + F ) ’  

and Ri is a maximum when All = - (1 + 3a)/4a, the maximum value being 
Roc = ( 1  +3a)2/8a(l  +a). This is also greater than 1, so that diffusion is 
destabilizing here also. 

This solution does not satisfy the boundary conditions and indeed for time 
scales O(1) a localized disturbance of this form will not be affected by the 
boundaries. However, if we are to extend this linear analysis to nonlinear inter- 
actions which occur on a much larger time scale, we may anticipate that the 
boundaries will play an important part. A nonlinear analysis centred on R,, or 
Roc will involve the critical wavenumbers, which are both zero, and this is as poor 
for our purposes as Stone’s value of infinity. Both Stone’s and McIntyre’s scalea 
are inappropriate in this critical neighbourhood, though it should be emphasized 
that their scales are appropriate for their particular problems and, indeed, they 
had no other choice of scale. In  order to determine a new scale we write 

w1 = (,B+ eiA+z++P-eih-z) exp (i ly + wt) ,  
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where $+ are 
satisfied if ,8- 

const,ants. Then the boundary conditions w1 = 0 at z = 0,1  are 
= -$+ and 

A, -A- = 2nm, (2 .23)  

where m is an integer. Substituting into (2.19) we get 

w3+aw2+bw+c  = 0, (2 .24)  

where a = Eh2(2 +a-l), 

b = (1 + ~ Z / A  + z 2 p 2 ~ i )  + ~ 2 ~ 4 ( 1 +  2+), 

c = [ E ( A ~  + z ~ ( i  + a) + rmi) + ~ 3 ~ 6 p -  

and h represents A+ or A_. We now suppose that 

(2 .25)  I A* = E-a(A,* +EaAl* + . . .), 
I = E-a(lo +Eat?, + . . . ), 

Ri = R,, + E"Rl + E2aR2 + . . . , 
where a is yet to be determined. 

c = 0. Substituting (2 .25 )  into (2 .24)  and assuming that a < Q we have 
For the monotonic mode the neutral-stability curve is given by w = 0, i.e. 

A,2+(1+a)zoAo+aRoz; = 0, 

and the boundary condition (2 .23)  means that this equation must have equal 
roots, i.e. 

R, = (1  + ~ ) ~ / 4 v  = R,, 
(2 .26)  1 and A,* = -+(l+a)Z,. 

Continuing the expansion we find that i f a  > 5 
A,[2A0 + (1 + a)l,] +Z1[(1 + C ) A ,  + 2al,R,] + c r z p l  = 0, 

1.e. R, = 0. 

Assuming that a < + leads us back essentially to Stone's problem, i.e. the 
scaling is too large. Now equating terms in E3-6a with those in E ,  i.e. taking 
a = 3,  we obtain 

Applying the conditions (2 .23)  we have 

A;+ (1 + a)Z1A1+ aROz; + aI?,z; +A! = 0. 

i.e. 

(2 .27)  

A,* = +[ - (1 + a) I ,  * ZrnT]. 

It is easily shown that R, has a maximum as a function of A, when A, is the 
positive real root of A! = Qm2r2, the maximum being 

R,,, = --(T)2r$)g. 3 l + a  
a (2.28) 
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For the oscillatory mode o = iwi on the neutral-stability curve with wi real. 
Substituting into (2.24) and equating real and imaginary parts to zero we obtain 

wt = b = c/a, 
which means that 

(1 + 2a) [A2 + 21h + 12Ri + E2h6( 1 + 2a-l)], =:A2 + lh( 1 + a) + a12Ri + E2h6. 

Again using the expansion (2.25) w6 obtain 

hi -I- (1 + 3a)/2ah010 -I- (1 + a)/%R0 = 0 

and this has equal roots if 

1 Ro = (1 + 3a)'/88( 1 + a) = Roc, 

Ao* = - Zo( 1 + 3 ~ ) / 4 a .  

Again R, = 0 provided that a > 5 and, taking a = 9, terms in E give 

Satisfying the boundary conditions gives 

(2.29) 

(2.30) 

Again R, clearly has a maximum 

RBoc = - 3de(m2m2/2d)j 

when A, is the positive real root of 

h6, = m2n2/2d, (2 .31 )  

where d = ( l + ~ - l ) ~ ,  e = ( 1 + 3 c ~ ) ~ / S a ( l + a . j .  

In  the inviscid model wi = 0 on the neutral-stability curve and it is of interest 
to investigate its value in the critical region. We have 

of = b = ( 3  + 8)  (1 - a)/( 1 + 3 ~ )  (1 + a) + O(E*), 

so that the effect of viscosity is not only to destabilize the flow but also to cause 
this mode to oscillate around the point of stability. Incidentally, when a = 1, 
Ro = 1 and@ = 0 ( E $  and this closely resembles the inviscid solution when 
we let E + 0. 

It is perhaps worthwhile comparing our results with those for rotating BBnard 
convection (Chandrasekhar 1961). In  that problem an inviscid fluid is stable to 
monotonic disturbances whatever the value of the adverse temperature gradient 
as a direct result of the Taylor-Proudman theorem. The presence of viscosity is 
essential for that constraint to be broken and instability to develop. In  our 
problem the vorticity of the basic shear flow inches the (absolute) vortex lines 
a t  an angle to the axis of rotation but the above result still applies and again 
viscosity is seen to be necessary for the onset of instability. Also, our governing 
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equation (2.19) is similar to that for rotating BBnard convection (Chandrasekhar 
1961, p. 104) and it is consequently no surprise that our critical wavelength is 
O(Ef). 

3. The nonlinear disturbance 
We consider here a perturbation of the basic zonal flow near the neutral- 

stability curve when the increment of the Richardson number above its maxi- 
mum Ri, on this curve is small. From the linear analysis [equation (2.19)] it may 
be seen that when w is small, O(h--2), a linear relation exists between w and Ri, 
so that when A = Ri, - Ri is small the growth rate of the disturbance will be O(A). 
(In the inviscid theory the growth rate is O(A4) as in the model examined by 
Pedlosky (1970)). This suggests that we introduce a slow time variable T = 1 A1 t .  
An appropriate expansion is then 

The governing equations (2.7)-(2.11) then become 

The O( 1)  solution is the basic flow given in (2.12), in which Ri = Ri,- A, i.e., 

(3.7) 

where the terms in A, although not strictly O(l) ,  are retained for convenience. 
The O(lAl4) problem obtained after substituting (3.1) into (3.2)-(3.6) is 

equivalent to the linear problem already discussed. We shall discuss only the 
monotonic mode here as it is this that becomes unstable first for all values of 
cr + 1 as Ri decreases. When CJ = 1 both modes become unstable a t  Ri = 1; 
this complicated special case will be excluded here. The linear solution is 

w1 = E#A(T) &sinmnz, ( 3 . 8 ~ )  

vl = -E*A(T) (h/Z)€sinmnx+E*A(T) (imn/Z)€cosmnz, (3.8b) 

I uo = 2, vo = wo = 0, 

8, = z - y/Ri, - AylRi: + O(A2), 
PO = $2'- yz/Ri, - Ayz/RiE + O(Az), 

u1 = -A(T) ~++o(Es)  
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a(h + Ri,Z) 
s, = -A(T)( Ri, A21 

&cosrnm, (3.8d) 
icrmn(h + 2ZR,) 

-E'A(T) ( 
Ri,lh3 

where d = exp{iE-H(Zy+hz)) and I and h take their critical values. 
Although w, = 0 at z = 0 , l  it  is apparent that the terms in cos mnz in u1 and v, 

prevent us from satisfying the no-slip condition at the upper and lower 
boundaries. An investigation of-the Ekman layers set up at these boundaries 
indicates that the correction to the single mode under examination is O(E) in the 
w component, and we may neglect this in the subsequent analysis. However, if 
we were to consider the nonlinear interactions of different modes we would have 
to take into account an O(E4) contribution from the Ekman layers. 

The O(lA1) problem is 
av2/ay + aw21az = 0, (3.9) 

where the bars denote complex conjugates. To a first approximation the terms 
on the right-hand sides of (3.10), (3.11) and (3.13) reduce to 

respectively. A particular integral of (3.9)-(3.13) is then 

I w2 = 0, v2 = -EfIA12[(h+1)/2h21~mnsin2rn7.rz, 

h 
u2 = E% IAJ2-m~sin2mnz7 

I 

The O( lAl3) problem is 
av, la~+aw,la~ = 0, 

(3.14) 

(3.15) 

(3.16) 
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aP3/a" = 03, (3.18) 

The inhomogeneities on the right-hand sides of these equations may be evaluated 
in terms of the lower-order solutions. Suppose that there is a solution of the form 

w3 = W&sinmm, etc., 

where W is a constant, i.e. that the inhomogeneities force a resonance. In  order 
to keep our expansion uniformly valid in time we must find a condition that W 
be zero. Substituting this form into (3.15)-(3.19) we find-that to leading order 

lV+hW = 0, (3.20) 

(3.21) W - V + E+h2U = A(h + Z)/h2Z = Q1, 

(3.22) h u(h + A = Q2,  u + ilE-*Ri,P + E*h2V = E* - A  - sgn A 1 Ri, A3 

ihE-*P = 0, (3.23) 

Elimination of U ,  V ,  P and 0 leads to an equation for W which has the solution 
W = 0 when 

hQ, - E*h3Q2 + c~Ri,lQ, = 0, 
i.e. 

Using All = - $( 1 + cr) and Ri, = (1 + ~ ) ~ / 4 c r  we obtain 

AIAI2. 
4Ebh2 A - E-fu2 

A = sgnA 
(1 + U) (1 - v ) ~  16( 1 + U) (3.25) 

A more convenient form is obtained by writing A = E+B and T = E b .  Then 
(3.25) yields 

d IBI 2/dT = sgn (A) a IA I - PIA 14, (3.26) 

where 
8u U 2  

a =  h2, p =  ~ 

8( 1 + u) . (1 + u)-( 1 -up 

This is identical to the form of equationgiven by Stuart (1960),:whose solution is 

''I2 = 1 + p/a IZ(0) l 2  [exp (a sgn (A) 7) - 11 ' 

where B(0) is some initial value of A. When sgn-A < 0, that is the perturbation 
of the Richardson number is above the critical-value, the flow is stable in the 

Im) l 2  exp (a  sgn (4 7) 
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linear analysis and IA12-+0 as 7 -+a. In  the linearly unstable case, sgnA > 0,  it 
can be seen that 

la12+a/P = 64h2/a(l-cr)2 as 7-+00, 

i.e., the amplitude tends to a constant value. 

4. Discussion 

Then for a Boussinesq fluid 
Let F* be the total meridional flux of zonal momentum due to advection. 

P* = p*HU2101uvdz = p*HU2F. 

Using the expansion (3.1) and employing the basic solution (3.7) we obtain 

J O  

where averaging over one wavelength in the meridional (y) direction has 
eliminated terms in \A14 and lAl ulwl. 

From (3.7), (3.8) and (3.14) and setting m = 1 we see that 

u1 ;ijl = E+IA 12 [ ( A  + Z)/AZ2] sin2 nx 

= -E*IA 12 [(I -a)/( 1 + a)] Z-zsinznz, 

ug v2 = - E+nz]A 12 [(I - a)/(l+ a)2] 1-zsin ~ n z ,  
and (4.1) becomes 

F =  PI :;JAI2(=)2 
l+a  ’ 

which means that zonal momentum is convected polewards for all values of the 
Prandtl number. Before discussing the significance of this result to the dynamics 
of Jupiter’s atmosphere, we should examine the validity of our approximations. 

In  92 we assumed that 8 < Ri and later on we included terms O(E3) in the 
expansion of (2.24) whilst rejecting a correction O(e2). Our theory is particularly 
appropriate therefore for shallow atmospheres. The mid-latitude zonal currents 
on Jupiter have velocity of order 10 m s-l and$ N lO-4s-l, so that the horizontal 
length scale U/f  is about 105m. Together with the assumption that Ri N 1, this 
means that we require H < lo5 m and also H < E+ x lo5 m. Taking a value for 
the eddy viscosity v N 102m2s-1 (Hide 1969), we obtain E - We require 
therefore H < lO4m, which is rather smaller than the scale height 2 x lo4 m, but 
the extension of our theory to  include deeper-atmosphere effects is not expected 
to be a significant modification. More serious defects in the model are the assump- 
tions that the zonal flow is meridionally unbounded and that Ri > 0. There is 
evidence that the mid-latitude currents are sharply bounded and that Ri may 
vary with latitude owing to internal heat sources; it  may even be negative in 
some latitudes (Ingersoll & Cuzzi 1969). Indeed, numerical investigation of a 
convectively unstable atmosphere (Ri c 0)  by Williams & Robinson (1973) has 
successfully reproduced some of the features of the visual appearance of the 
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Jovian atmosphere and has demonstrated that a purely symmetric motion can 
lead to an equatorial acceleration. 

Summarizing, we may say that if our model is an acceptable approximation 
to the conditions on Jupiter then, at least when the Richardson number is not far 
removed from the critical value, symmetric instabilities do not convect zonal 
momentum equatorwards and will not therefore be able to support an equatorial 
jet. For a more complete description the stability analysis should be carried 
beyond that of 5 3 to more moderate values of Af and it is hoped that this will be 
the subject of a subsequent paper. 

The author would like to express his appreciation to Professor K. Stewartson 
and Professor R.Hide for many stimulating discussions and to the Science 
Research Council for financial support. 
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